Or gate Bayesian networks for text classification: A discriminative alternative approach to multinomial naive Bayes

نویسندگان

  • Luis M. de Campos
  • Juan M. Fernández-Luna
  • Juan F. Huete
  • Alfonso E. Romero
چکیده

We propose a simple Bayesian network-based text classifier, which may be considered as a discriminative counterpart of the generative multinomial naive Bayes classifier. The method relies on the use of a fixed network topology with the arcs going form term nodes to class nodes, and also on a network parametrization based on noisy or gates. Comparative experiments of the proposed method with naive Bayes and Rocchio algorithms are carried out using three standard document collections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Stage Text Classification Using Bayesian Networks

The“curse of dimensionality”provides a powerful impetus to explore alternative data structures and representations for text processing. This paper presents a method for preparing a dataset for classification by determining the utility of a very small number of related dimensions via a Discriminative Multinomial Naive Bayes process, then using these utility measurements to weight these dimension...

متن کامل

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

Bayesian network classifiers which perform well with continuous attributes: Flexible classifiers

When modelling a probability distribution with a Bayesian network, we are faced with the problem of how to handle continuous variables. Most previous works have solved the problem by discretizing them with the consequent loss of information. Another common alternative assumes that the data are generated by a Gaussian distribution (parametric approach), such as conditional Gaussian networks, wit...

متن کامل

A Comparison of Event Models for Naive Bayes Text Classification

Recent approaches to text classification have used two different first-order probabilistic models for classification, both of which make the naive Bayes assumption. Some use a multi-variate Bernoulli model, that is, a Bayesian Network with no dependencies between words and binary word features (e.g. Larkey and Croft 1996; Koller and Sahami 1997). Others use a multinomial model, that is, a uni-g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008